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INTRODUCTION

The use of autofrettage to enhance fatigue lifetimes of thick cylinders subjected
to internal cyclic pressurization is well known and relatively well understood.
Recent work has addressed the problems associated with geometrical changes
which remove the initial axi-symmetric nature of geometry and stressing of these
tubes, namely:

a. Axial erosion grooves, which arise after autofrettage,along the bore of
the tube, Ref [1].

b. Cross-bore holes normal to the tube axis [2] and inclined at an angle to
the axis [3]. These holes likewise are introduced after autofrettage.

c. Periodic axial holes within the bore which are introduced prior to
autofrettage of the tube [4].

The purpose of the work presented herein is to predict, using elastic and
elastic/plastic stress analysis methods, the fatigue behavior of compound
cylinders which contain a series of equally-spaced holes oriented parallel to the
tube axis, the holes being created by the thermal shrink-fitting of an external
(plain) tube onto an externally-notched inner tube, Fig. 1. Experience indicates
that two potentially critical failure locations are on a radial line at the point on the
hole closest to the bore and on the bore itself.

Inner Notched Tube N g
External (Shrink-Fit)
Tube

Fig. 1 : Hole Geometries Analyzed Using Finite Element Method

ELASTIC FINITE ELEMENT ANALYSIS

Several possible designs were analyzed using the NISA Finite Element program.
In all cases they consist of a cyclic array of 24 equally-spaced holes. The
material had an Elastic Modulus, E, of 200GPa and a coefficient of thermal
expansion, o, of 12x10°/degC; in cases of autofrettage used for comparison
purposes a yield strength of 1200MPa was employed.




Throughout the investigation the inner and outer radii (R, and R,) were 84.5mm
and 152.5mm respectively. The groove radius (R ) was 6.35mm. Interface radii
(R, ) for the cases considered are given in Table 1 below:

Table 1 : Interface Radii Examined

Case 1:interface radius (R) 122.00mm
Case 2: Interface radius (R) 114.00mm
Case 3:Interface radius (R) 106.75mm
Case 4: Interface radius (R) 100.65mm

In order to construct an FE mesh for these configurations taking full advantage
of symmetries it was only necessary to model some 360/(24x2) or 7.5 degrees of
the tube. Essential symmetry conditions were ensured by imposing zero shear
stress and zero tangential displacement on all radii of symmetry. The
interference was simulated in the FE analysis by maintaining a constant
temperature difference between material in each of the inner and outer tubes.

One particular objective of this work was to compare the shrink fit method with
the alternative of autofrettage examined in Ref [4]. Three different amounts of
shrink fit were investigated for each of the four interface radii. The shrink fits
were designed to give a hoop stress at the bore of two shrink-fit plain cylinders
equivalent to 40%, 50% and 60% autofrettage (overstrain) of a solid tube
respectively. These temperature differentials were selected to give an

appropriate spread of results for comparison purposes, whilst avoiding significant
amounts of plasticity at the hole boundary. The relationships between equivalent
autofrettage, interference and temperature differential are shown in Table 2.

Table 2 : Relationship Between Equivalent Autofrettage, Interference and
Temperature Differential for Tubes Examined

Equiv. Autofrettage Interference Temp diff
Case 1 40% 0.6627mm 452.65deg C
50% 0.7828mm 534.72deg C
60% 0.8508mm 581.15deg C
Case 2 | 40% | 0.5004mm 365.8deg C
50% 0.5911mm 432.1deg C
60% 0.6424mm 469.6deg C
Case 3 40% 0.4008mm 312.9deg C
50% 0.4735mm 369.6deg C
60% 0.5146mm 401.7deg C
Case 4 40% 0.3512mm 290.8deg C
50% 0.4150mm 343.6deg C
60% 0.4510mm 373.4deg C



To simulate cyclic pressurization a pressure of 434.4 MPa was applied to the
bore.

ELASTIC HOOP STRESSES DUE TO BORE PRESSURIZATION
AND SHRINK FIT | ~

Fig. 2 shows(upper curve) the elastic variation of hoop stress with radius from
the bore to the notch root for an internal pressure of 434.4MPa. For comparison
the standard (Lamé) solution for a pressurized, plain thick cylinder is also
shown. This indicates the expected stress concentration effect of the notch and a
slight variation at the bore resulting from the presence of the holes, see [4] for a
discussion of this point.

Fig. 2 also illustrates (lower three curves) the compressive hoop stresses
resulting from the shrink fitting process. These results were obtained from an
elastic analysis using NISA, and it is clear that no compressive yielding is likely
for Cases 1 and 2 since maximum hoop stress magnitude does not exceed yield
strength (1200 MPa). Elastic/plastic analyses were also conducted for those
cases of shrink-fitting in which yielding might occur; these results are referred to
later in this paper. For comparison the more complex residual stress'profiles
resulting from an elastic/plastic FE analysis of autofrettage of the same geometry
[4] are also presented in Figure 2 as the middle three curves; note that these
results relate to equivalent overstrains of 40%, 60% and 80%.

HOOP STRESS RANGE AND FATIGUE LIFETIME

Superposition of the combinations of elastic stresses due to internal pressure
and residual stresses arising from shrink-fitting provides an indication of the
positive stress range during cyclic pressurization, Fig. 3.

There are two potential fatigue failure locations on a single radial line at the point
on the hole closest to the bore and at the bore itself. The fatigue lifetime
formulae, based upon Paris' law and governing lifetime for failure from different
initial defect sizes with different stress ranges are developed in [5] . In summary
the fatigue lifetime at a particular location depends principally upon initial defect
size (a) and stress range (Ao), the latter taking account of both residual stresses
and any pressure acting upon the crack surfaces as a result of infiltration from
the bore. The expression for lifetime. N, is:

(1-mi2)
a.

N =

Cn™2(mi2—-1)}An™ (1)
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where C and m are Paris' Law coefficient and exponent respectively.

For design purposes, where there are two potential failure locations, it may be
more useful to plot lifetime ratios. If we calculate the ratio of lifetimes with two
different initial crack lengths and associated stress ranges, a, and Ao, 8, and
Ao, , these combinations will, in general, yield two different lifetimes, N, and N,.
From Equation (1) the ratio of these lifetimes is:

N2 _ [_3_3] 4—mi2) I:Ao1 m

N ai Aoy (2)
The effective stress range at the hole is given in Fig. 3 by the values at the far
right of each plot, whilst the effective stress range at the bore is that given in
Figure 3 at the left plus the contribution from the bore pressure which infiltrates
the fatigue crack. Assuming at this stage equal length initial defects at the two
locations, the more critical will be that with the higher effective stress range.
Table 3 gives ratios, for all geometries analyzed, of effective stress range at

bore/effective stress range at hole, designated Fatigue Stress Range Ratio, R,
where:

R, = (Hoop Stress Range at Bore + Bore Pressure) (3)
Hoop Stress Range at Notch

When R, is below unity this indicates a potential shift of failure location from
bore to hole for the case of equal length initial defects at the two locations. In the
general case where ag # a4 Equation (2) indicates that the shift will occur
when:

R - s (1/m-1/2)
o= |z (4)
where a_ and a,, are the initial crack sizes at the bore and the hole respectively.

Table 3 shows the R, ratio for shrink-fitting for all cases considered. For all
geometries the result of the elastic analysis is provided. In cases of shrink-fitting
in which yielding occurs the value in parentheses refers to the equivalent
elastic/plastic FE analysis result. For comparison Table 3 also includes full
results of the elastic/plastic autofrettage FE analysis reported in detail in [4].
Furthermore, since there is experimental evidence that, for the autofrettage
case, the residual stresses at the hole may be near to zero, a further set of ratios
based on this assumption is included.



Table 3 : Fatigue Stress Range Ratios for Shrink Fit Analysis, Autofrettage
Analysis and Autofrettage Experiment

Equivalent Shrink - Fit Autofrettage Autofrettage
Autofrettage (Analysis) (zero residual
stress)

Case 1 40% 1.62 1 1.21

50% 2.19 - _

60% 2.96 1.02 1.01

80% - 1.10 0.89
Case 2 40% 1.40 1.10 0.59

50% 1.77 _ _

60% 2.20 1.13 0.50

80% _ 1.12 0.43
Case 3 40% 1.06 1.17 0.53

50% 1.25 (1.21) o _

60% 1.44 (1.09) 1.35 0.44

80% _ 1.53 0.38
Case 4 40% 0.64 0.85 0.37

50% 0.69 (0.53) _ _

60% 0.74 (0.46) 0.72 0.28

80% 0.61 0.24

Note 1: Shrink-fit results are predominantly elastic. Where yielding occurs the equivalent
elastic/plastic result is given in parentheses. '
Note 2: See Ref [4] for full details of autofrettage analyses

It is important to note that the differences between predicted and measured
residual stresses at the hole reported in [4] arise from elastic/plastic assumptions
which do not fully represent the actual notch effects. In the case of the
shrink-fitting process, which is overwhelmingly elastic in nature and in which
reversed yielding does not occur, such problems do not arise.

In fact the assumption of equal initial defect sizes at hole and bore is far from
reality, since in the application under consideration (a large caliber gun tube) the
initial crack depth at the bore due to heat-checking is likely to be several times
larger than that at the hole.

In the case of autofrettage there is some evidence that failure may initiate from
the hole in cases of over 60% autofrettage (overstrain) (Ref [4]). In the case of




shrink-fit it appears that the critical location will undoubtedly be the bore; there
are two reasons for this assertion:

a. The fatigue stress range is higher at the bore for Cases 1,2 and 3

b. The initial defect sizes are larger at the bore (at least twenty times
greater than at the hole, [4]). Referring to Equation (4) it is noted that with
such a ratio of initial defect sizes, failure will occur from the bore down to
a fatigue stress ratio of 0.61, assuming a Paris law exponent, m = 3.
Clearly such a figure is not achieved in any of the shrink-fit cases under
consideration.

This observation leads to a straightforward prediction of fatigue lifetime for the
shrink-fit design of Case 2 which has the same value of a, as the autofrettage
design. Since there are laboratory lifetime figures available for failures originating
from the bore of heat-checked cannon tubes made of the same material, [4],
Equation ( 2) indicates that, for such equal initial crack sizes, the predicted
lifetime is given by:

Lab Lifetime x (Lab Effective Stress range / New Effective Stress range)™ (5)

Some existing data is provided in Table 4, and used to predict lifetimes for Case
2. This is further compared with experimental data relating to failure from the
hole in the autofrettaged design; in the latter case a ratio ay/a,, = 58.8 is
assumed in accordance with [4].

In the case of the 60% overstrain of a plain tube, the tube was subjected to a
cyclic bore pressure of 393 MPa resulting in a positive bore stress range of
717.8 MPa. Prior to cyclic pressurization the tube had been fired sufficiently for
initial bore heat-check cracking to be fully established. Thus the initial crack size
at the bore may be assumed to be the same in other heat-checked tubes. in the
case of shrink-fitting, with failure from the bore, a simple application of Equation
(5) provides the predicted lifetimes shown in Table 4. ‘

Turning to the case of autofrettage, with failure from the hole, Ref [4] contains
details of the calculation of the ratio ag/a,, where a,relates to heat-checking
and a, relates to surface finish. The ay/a,, ratio calculated in [4] is 58.8.
Equation (2) then provides a lifetime prediction of 9,005 cycles with cyclic
pressurization of 434 MPa. This lifetime is the same for all percentage
overstrains since it is observed experimentally, [4], that residual hoop stress at
the hole is near zero.

An additional objective of this work was to determine whether, by adjusting the
semi-circular groove shape, effectively making it a semi-ellipse with a reduced
radius of curvature at the critical location, there would be any improvement in



lifetime. The conclusion is clear, since the notch is not the primary fatigue failure
location, any reduction in the local stresses will have no effect upon an overall
lifetime which is governed by failure from a relatively remote location, namely the
bore.

Table 4 : Predicted Lifetimes for Proposed Shrink-Fit design (Case 2)

60% overstrain of plain tube - Experimental
result; (Ref 4)

Stress range (MPa) (B) 717.8

Life (Cycles) 10,873

Shrink Fitting - Predicted Lifetimes of

Perforated Tube;

Equivalent Autofrettage (%) "~ 40% 50% 60%

Stress range (MPa) (B) 732.44 624.02 562.7 _
Life (Cycles) (B) 10,234 16,549 22,570 _

Autofrettage - Predicted Lifetime for
All % overstrains of perforated tube
(based upon experimental result); Ref 4

Equivalent Autofrettage (%) 40% - 60% 80%
{

Stress Range (MPa) (H) 1511 - 1511 1511

Life (Cycles) (H) . 9,005 _ 9,005 9,005

Notes:

1. All predicted lifetimes are for Case 2 geometry
and loading with cyclic bore pressure of 434 MPa
2. (B) indicates failure originating from bore

3. (H) indicates failure originating from hole

4. ag/a, = 58.8 throughout (Ref 4)

A NORMALIZED, PARAMETRIC DESIGN REPRESENTATION

For future design purposes it may be more appropriate to present the results
herein in normalized form, since by varying the major parameters (amount of
shrink-fit and radius of interface) the crucial fatigue stress range ratio, R,, will
vary and may cause the critical location to shift from bore to hole. Fig. 4 shows
the variation of R, with normalized interface radius, R, and normalized interface
pressure, P,, where:

R,=(Ri- R1)/(R2 - R1) and P, =EaT/P

where P is pressure acting upon bore and bore crack surfaces. Note that all
results presented in normalized form are based upon elastic analyses.




25

~

-
wn

-

o //;‘/’/M’-;mmalised vy
;/// interface 1:i
Stress (see w193

Fatigue Stress Range Ratio

05 Text for —a—221
Definition) —8—249!
0
020 025 030 035 040 045 050 055 060

Radius Ratio of Interface

Figure 4 : Normalized Representation of Fatigue Stress Range Variation

As discussed earlier, the regions within which the R, surface shown in Fig. 4
dips below unity indicate a potential shift of failure location from bore to hole for
the case of equal length initial defects at the two locations. In other cases the
shift will occur in accordance with Equation (4).

SUMMARY AND CONCLUSIONS

This work addressed the fatigue lifetimes of thick cylinders containing muitiple,
axial holes within the wall. The holes are semi-circular and were created by
thermally shrink-fitting an outer (plain) tube onto an inner tube which contains a
periodic array of semi-circular notches. Finite Element analyses indicate that the
residual stresses so introduced are compressive in the two principal potential
failure locations, namely the bore and the notch root.

Superposition of an elastic stress field due to bore pressurization permits the
calculation of positive cyclic stress ranges from bore to hole. This in turn may be
used (after taking account of pressure infiltrating bore cracks) to calculate
Fatigue Stress Ranges at bore and hole. These indicate that, for most cases
considered, the critical fatigue location is the bore and that there is no benefit in
seeking to reduce the stress concentration at the notch root.

Further comparison of an alternative method of introducing advantageous

residual stresses, namely autofrettage of two of the cases considered, indicates
significant lifetime advantages for the shrink-fit design.

10



Finally, a normalized design presentation is proposed which permits a rapid
assessment of the major design parameters, interference and shrink-fit radius.
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